1 Administrivia

Announcements

Assignment

Read 3.4–8.

From Last Time

Color, projections, viewports, project lab.

Outline

1. Input devices, programming models.

2. API.

Coming Up

Display lists, menus, picking.
2 Input Devices

Physical devices: Keyboard, mouse, trackball, data tablet, light pen, touch screen, joy stick.

How do mice, light pens work?

Pointing device necessary to interact with graphics.

What about 3-D interaction? (Space ball, data gloves)

2.1 Logical Input Devices

1. String.

2. Locator: Returns (x, y). Convert window coordinates to world coordinates.

3. Pick: Select an object. Must determine what object was selected.

3 Input Device Program Interaction Models

Terminology:

1. Measure: The data — (x, y), input string, etc.

2. Trigger: User indication that the measure should be taken — “Enter” key, mouse click.

Interaction modes:
1. Request (synchronous wait) mode.
 Measure not returned until trigger.
 Advantages/disadvantages.

2. Sample (asynchronous poll) mode.
 Measure returned any time.
 Advantages/disadvantages.

3. Event mode.
 Queue of (trigger, measure) pairs. Asynchronous.
 Advantages/disadvantages.
 OpenGL, callbacks, and \texttt{glutMainLoop()}.

4. \textbf{Input Device API}

 1. \texttt{glutMouseFunc(pointerToMouseCallbackFunction)}

 2. \texttt{void MouseCallbackFunction(int button, int action, int x, int y)}

 (a) \texttt{GLUT_LEFT_BUTTON}, etc.

 (b) \texttt{GLUT_UP, GLUT_DOWN}.

 (c) \texttt{x} and \texttt{y} are \textit{window}-relative coordinates.

 Example:

 // ...

 glutMouseFunc(mouse);

 // ...

 void mouse(int btn, int action, int x, int y)
if (btn == GLUT_LEFT_BUTTON && action == GLUT_DOWN)
{
 myInit(rows, cols, 1);
 visit(1, 1);
 glutPostRedisplay();
}
else if (btn == GLUT_RIGHT_BUTTON && action == GLUT_UP)
 exit(0);

3. glutMotionFunc(pointerToMotionFunction)
 Also, glutPassiveMotionFunc().

4. void MotionFunction(int x, int y)
 (a) Active motion — mouse button depressed.

 (b) How do we know which mouse button is depressed?

 (c) Again, window-relative coordinates.

5. glutKeyboardFunc(pointerToKeyboardFunction)

6. void KeyboardFunction(unsigned char key, int x, int y)
 (a) key is ASCII of key depressed.

 (b) Yet again, window-relative coordinates.

 (c) See glutSpecialFunc() for non-ASCII keys.

 Example:

 #define ESC 0x1b
 // ...

 glutKeyboardFunc(keyboard);
// ...

void keyboard(unsigned char key, int x, int y) {
 switch (key) {
 case 'w':
 case 'W':
 printf("The Clinton people took all these keys.\n");
 break;

 case ESC:
 exit(0);
 break;

 case '!':
 globalThermonuclearWar();
 // Not reached.
 break;

 // ...

 others:
 fatal("Un-recognized key.\n");
 break;
 }
}

7. glutDisplayFunc(pointerToDisplayFunction)

8. void DisplayFunction(void)

 (a) Callback generated by window system events.

 (b) Can self-generate with glutPostRedisplay().

9. glutReshapeFunc(pointerToReshapeFunction)

10. void ReshapeFunction(GLsizei w, GLsizei h)

 As previously discussed, have to reconcile clipping region aspect ratio to window aspect ratio.