Background for Database Normalization

Tom Kelliher, CS 318

Mar. 6, 2002

1 Administrivia

Announcements

Assignment

Read 8.1–4.

From Last Time

Relationship between SQL, relational algebra, and calculi.

Outline

1. The problem.
2. Decomposition.
3. Functional dependencies.
Coming Up

Further properties of functional dependencies.

2 The Problem

Consider the following E/R diagram, schema, and relation instance:

CREATE TABLE Person (
 SSN INTEGER,
 Name CHAR(20),
 Address CHAR(50),
 Hobby CHAR(20),
 PRIMARY KEY (SSN, Hobby));

Note that neither SSN nor Hobby may be NULL, since they’re part of a primary key.

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>111111111</td>
<td>John Doe</td>
<td>123 Main St.</td>
<td>Stamps</td>
</tr>
<tr>
<td>111111111</td>
<td>John Doe</td>
<td>123 Main St.</td>
<td>Hiking</td>
</tr>
<tr>
<td>111111111</td>
<td>John Doe</td>
<td>123 Main St.</td>
<td>Coins</td>
</tr>
<tr>
<td>222222222</td>
<td>Jane Smith</td>
<td>321 Elm St.</td>
<td>Gardening</td>
</tr>
<tr>
<td>666666666</td>
<td>Evil Tom</td>
<td>666 Turnmill Ct.</td>
<td>Ice Cream</td>
</tr>
<tr>
<td>666666666</td>
<td>Evil Tom</td>
<td>666 Turnmill Ct.</td>
<td>Perpetrating Evil</td>
</tr>
<tr>
<td>666666666</td>
<td>Evil Tom</td>
<td>666 Turnmill Ct.</td>
<td>Hiking Devils Postpile</td>
</tr>
</tbody>
</table>

Questions:
1. Suppose we want to insert John with no hobbies?
 We have to come up with an effective “No Hobby” hobby.

2. Suppose we later want to add a hobby for John. Do we update the original tuple or add a new tuple?
 Special case!

3. Consider how much work must be done if Evil Tom becomes Good Tom.
 This is counter-intuitive, making three DB changes to reflect one real change.

4. Suppose Jane no longer gardens.
 Another special case!

These *update anomalies* are the result of undesirable redundancy in the DB.

2.1 Decomposition

1. Consider the decomposition of Person into:

   ```
   Person(SSN, Name, Address)
   Hobby(SSN, Hobby)
   ```

 (a) How does this solve our problems?

 (b) What redundancy remains? Does it matter?

2. Consider this decomposition of Person:

   ```
   SSN(SSN)
   Name(Name)
   Address(Address)
   Hobby(Hobby)
   ```

 (a) No redundancy, right?
(b) What’s wrong with this decomposition?

3. Key idea — E/R design may result in redundancy. We need a set of tools to find an eliminate redundancy.

3 Functional Dependencies

1. Functional dependency definition:

 A constraint over a relation \(R \) of the form \(X \rightarrow Y \) where \(X \) and \(Y \) are sets of attributes of \(R \). If \(r \) is an instance of \(R \), it is said to satisfy this functional dependency if:

 For every pair of tuples \(s \) and \(t \) in \(r \), if \(s \) and \(t \) agree on \(X \) then \(s \) and \(t \) agree on \(Y \).

 Informally, we would say \(X \) determines \(Y \).

2. What type of constraint have we already see which is a functional dependency?

3. Example:

 \(\text{SSN, Hobby} \rightarrow \text{SSN, Name, Address, Hobby} \)

 \(\text{SSN} \rightarrow \text{Name, Address} \)

 How are our update anomalies manifest here?

 Any other dependencies in the first Person relation?

4. What are the functional dependencies in the Person/Hobby relations?

5. What are the functional dependencies inherent in this flawed E/R diagram?

![E/R Diagram](image-url)
6. Nomenclature:

(a) Individual attributes: A, B, C.

(b) Sets of attributes: ABC, P, X, XY.

4 Properties of Functional Dependencies

Entailment: Consider all relation instances r over attributes R. We say the set of FDs F entails the FD f if the following property is true:

If r satisfies every FD in F, then r satisfies FD f.

The closure of F (written F^+) is the set of all FDs entailed by F. Note $F \subseteq F^+$.

Armstrong’s Axioms:

1. Reflexivity of FDs. If $Y \subseteq X$ then $X \rightarrow Y$.

 Proof. Consider a relation instance r over attributes XY. If $s, t \in r$ agree on X, then they agree on Y. Hence, $X \rightarrow Y$.

 Such trivial FDs are entailed by any set of FDs.

2. Augmentation of FDs. If $X \rightarrow Y$ then $XZ \rightarrow YZ$ for a relation instance r containing XYZ.

 Proof?

3. Transitivity of FDs. If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$.

 Proof is a homework problem.