Pipelining a Datapath

Tom Kelliher, CS 240

Apr. 15, 2002

1 Administrivia

Announcements

Assignment

Read 6.3.

From Last Time

Overview of pipelining.

Outline

2. Simple example: a single lw.

Coming Up

Pipelined control.
2 Pipelining

A pipelined datapath:

Consider four instructions: R-mode, a branch, LW, SW.

Observations:

1. Not a true pipeline: feedback.
2. How do we re-design control?

2.1 Hazards

1. Structural hazards.

 Example: unified L1 cache/memory.

2. Control hazards. Consider the following example:
Solutions:

(a) Stall.

(b) Predict.

Static prediction. Truly static. Compile-time determined.

Dynamic prediction. Branch history tables. One-, two-bit counters.

c) Delayed branch.

Assumes you know branch outcome early.

Code scheduling:
Consideration: deeper pipelines.

3. Data hazards.

Data not available when needed.

ALU example:

<table>
<thead>
<tr>
<th>Time (in clock cycles)</th>
<th>CC 1</th>
<th>CC 2</th>
<th>CC 3</th>
<th>CC 4</th>
<th>CC 5</th>
<th>CC 6</th>
<th>CC 7</th>
<th>CC 8</th>
<th>CC 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of register 2:</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10–20</td>
<td>–20</td>
<td>–20</td>
<td>–20</td>
<td>–20</td>
</tr>
</tbody>
</table>

Program execution order (in instructions)

1. sub $2, $1, $3
2. and $12, $2, $5
3. or $13, $6, $2
4. add $14, $2, $2
5. sw $15, 100($2)
Fixed by forwarding.

Memory example:

How can this be fixed?

2.2 Simple Example

Let’s follow a lw. What’s going on during each clock cycle?
Add
Shift left 2

Execution

Instruction memory

Add

ALU

Data memory

Registers

0
/
/
+

354

M
u
x
ALU
6

M
u
x

4

4
Figure 06.15

97108/Patterson